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1. INTRODUTION & OBJECTIVES 

The GHOSTE Team (Gestion Hydraulique, Optimisation et Supervision des Transferts d’Eau) is part 

of the UMR G-eau (Unité Mixte de Recherche sur la Gestion de l’Eau, de ses Acteurs et de ses 

Usages), located at Irstea, Montpellier, France. This Team has more than 30 years’ experience in 

hydraulic modeling, software development (SIC
2
 software and some others), automatic control, dam 

management and data assimilation (Particle Filters, Kalman Filters, Variational methods) on open 

surface hydraulic systems such as Rivers and Irrigation Canals. The upcoming Surface Water and 

Ocean Topography (SWOT) mission is a challenging project and an opportunity to test and further 

develop algorithms using its scientific and technical resources. 

 

Variational data assimilation has been applied for discharge estimation under uncertainties in river 

bathymetry and bed roughness using the hydraulic model SIC². Synthetic WSE measurements, which 

emulate the spatial and temporal sampling of the SWOT mission, are assimilated for the Garonne 

River downstream reach. Similar tests have been carried out on the Po and Sacramento Rivers using 

the SWOT hydrology simulator developed at JPL. We investigate simultaneous estimation of 

discharge, river bathymetry and bed roughness in the framework of the extended control vector 

approach. 
 

2. METHODOLOGY 

 2.1 Hydraulic model: 1.5D SIC² 

 

SIC² is a one-dimensional hydraulic model developed at Irstea-Montpellier (previously Cemagref) 

(http://sic.g-eau.net/). This software is dedicated to modeling the flow dynamics of rivers, irrigation 

canals and drainage networks. The model inputs, in its classical direct mode, include initial condition 

on discharge ),( 0txQ  and WSE ),( 0txZ , usually given by a steady flow solution, upstream and 

downstream boundary conditions on discharge ),( txQ  and/or WSE ),( txZ . A-priori information on 

the channel bed level )(xZb  along with the complete description of cross-sections of any shape, 

including the top width )(xW  and roughness, given by the Strickler coefficient )(xCs
, should be 

provided. 
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SIC² solves the full 1D Saint-Venant equations for steady and unsteady open channel flow: 
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where, ),( txQL  refers to the channel lateral discharge, )),(( txZA  is the wetted cross-sectional area, 

)/( 3
4

222 RACQS Sf   represents the friction term, R is the hydraulic radius, Ck is the lateral 

discharge momentum coefficient and AQv /  is the mean velocity. The four-point implicit finite-

difference method, Preissmann scheme, is used to find the numerical solution of these equations. 

 

 2.2 Variational data assimilation 

 

Data Assimilation methods have been widely used in environmental applications to find the best 

estimate of the ‘control’ variables. The control vector, denoted U , usually consists on the state 

variables and parameters which govern the behavior of the system (initial state, boundary conditions, 

model parameters, etc.). Most DA methods aim to combine the contributions from different sources of 

information (observations, a priori knowledge called the ‘background’, etc.), weighted by their 

respective approximate variance. In practice, the available observations Y  and background bU  are 

corrupted by noise. Therefore, the observation error o  and the background error b  are introduced 

such that o

tYY   and b

t

b UU  , where 
tY  and 

tU  assumed to be the ‘true’ values of Y

and bU , respectively. In this respect, the variational DA approach gives the best estimate of the 

control vector by minimizing a cost function. Under the Gaussian assumptions on the observation and 

the background error probability distribution, the classical formulation is given by a weighted 

quadratic cost function to be minimized, such that )(minarg
~

UJU U , for: 
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where  T

ooER   and  T

bbE   are the observation and the background error covariance 

matrices, respectively, and YU: G  represents the nonlinear operator that maps the model 

variables into the observation space.  

 

The stability of the minimization procedure can be achieved by introducing the change of variables

WUU b
2

1


 . We use the iterative regularization method, based on the semi-convergence of the 

solution and the following discrepancy principle ),()
~

( 2  mWJ  , where m and   are the 

observation space dimension and the confidence level, respectively. The minimization problem 

becomes: 
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The minimization of the cost function is achieved by using iterative methods, such as quasi-Newton 

methods. For example, the limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) update 

step has the form: 
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where, at the 
thi  iteration, i  is the descent step and 

1~  i  is the approximated inverse of the Hessian. 

The gradient of the cost function at iW  has the form: 
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where, )(' iUG  and  *)(' iUG  are respectively the tangent linear model and the adjoint model of the 

nonlinear operator )( iUG , given by the following Gâteaux derivative: 
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The tangent linear and adjoint models of SIC² have been produced using the automatic 

differentiation tool TAPENADE developed by INRIA (France). For further information, the reader 

can refer to the related papers stated in section 5. 

 

3. EXPERIMENTAL DESIGN 

The study area is a 50 km downstream reach of the Garonne River, France, flowing from Tonneins at 

the upstream to La Réole at the downstream. We focus on the flooding events that occurred during the 

year 2010, particularly during the period January-August, with a maximum discharge value of 

1800 m
3
/s. 

 

This study aims to assess the performance of the variational DA in discharge estimation under 

uncertainties, bringing to light the utility of the SWOT measurements. We investigate the estimation 

of the upstream discharge boundary condition Q(xup, t) (flood hydrograph), located at Tonneins. In 

this respect, the identical twin experiment framework has been considered. We use SIC² simulation to 

obtain the synthetic SWOT measurements of WSE, spatially distributed each km10 , with an error 

standard deviation equal to cm10 . 

 

The initial guess on discharge is taken as the mean annual value at Tonneins, being constant during the 

assimilation sub-window. The first guess for the subsequent sub-window is taken from the final time 

estimate of the previous sub-window. From the available observations (water level and width) and the 

Manning’s equation under the rectangular assumption of the cross-sections shape, and uniform flow, 

the first guess on the bathymetry and the friction coefficient are generated. These priors are generated 

in the framework of the SWOT Discharge Algorithm Working Group experimental design (“The Pepsi 

Challenge”). 

 

4. RESULTS AND DISCUSSION 

The results of the simultaneous estimation of discharge, bed level and friction coefficient are 

illustrated in Figure 1 and Figure 2, for the following time frequencies: 1) 1-day, which is the time 

frequency used in the Pepsi Challenge, 2) 5-day, which is the expected SWOT time frequency in the 

mid-latitude. 

 



Starting from non-informative first guess, discharge is successfully estimated, with 𝑟𝑅𝑀𝑆𝐸 =
4.6%, when the temporal frequency is comparable with the characteristic time of the dynamical 

system. For smaller frequencies, unobserved intervals may lead to inaccurate results, with 𝑟𝑅𝑀𝑆𝐸 =
24.1%, if no complementary information is provided (informative background, in-situ measurements). 

The uncertainty in the bathymetry and the friction has been explicitly treated via the simultaneous 

estimation of discharge, bed level and friction coefficient. The discharge is very well recovered during 

observation times, whereas the estimates of the bed level and the friction coefficient only help to 

achieve a better estimation quality for discharge. Therefore, these estimates may not be usable for 

subsequent experiments of data assimilation or for model calibration. 
 

  

  
 

Figure 1: Estimation of discharge under uncertainty in the bed level and Strickler coefficient using simplified 

rectangular bathymetry. Observation frequency: 1day. 

 



 

  
 

Figure 2: Estimation of discharge under uncertainty in the bed level and Strickler coefficient using simplified 

rectangular bathymetry. Observation frequency: 5day. 

 

Similar tests and results have been obtained on the Po and Sacramento River using the SWOT 

simulator outputs. The corresponding results are under publication. The objective of the team is to 

further test and develop this algorithm, on various situations, such as the ones of the Pepsi and DA 

Pepsi Challenges. 
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